
LDflex: a Read/Write Linked Data Abstraction
for Front-End Web Developers

Ruben Verborgh and Ruben Taelman

IDLab, Department of Electronics and Information Systems,
Ghent University – imec, Ghent, Belgium
ruben.{verborgh,taelman}@ugent.be

Abstract. Many Web developers nowadays are trained to build applications with
a user-facing browser front-end that obtains predictable data structures from
a single, well-known back-end. Linked Data invalidates such assumptions, since
data can combine several ontologies and span multiple servers with different apis.
Front-end developers, who specialize in creating end-user experiences rather than
back-ends, thus need an abstraction layer to the Web of Data that integrates with
existing frameworks. We have developed LDflex, a domain-specific language that
exposes common Linked Data access patterns as reusable JavaScript expressions.
In this article, we describe the design and embedding of the language, and discuss
its daily usage within two companies. LDflex eliminates a dedicated data layer
for common and straightforward data access patterns, without striving to be
a replacement for more complex cases. The use cases indicate that designing
a Linked Data developer experience—analogous to a user experience—is crucial
for adoption by the target group, who in turn create Linked Data apps for end users.
Crucially, simple abstractions require research to hide the underlying complexity.

1 Introduction

Other than in the beginning days of the Semantic Web, user-facing Web applications
nowadays are often built by a dedicated group of specialists called front-end developers.
This specialization resulted from an increasing maturity of the field of Web development,
causing a divergence of skill sets among back-end and front-end developers, as well as
different technologies and tool stacks. The current Semantic Web technology stack,
in contrast, focuses mostly on back-end or full-stack developers, requiring an intimate
knowledge about how data is structured and accessed. A dormant assumption is that others
will build abstractions for front-end developers [29], whereas designing an adequate
developer experience requires a deep understanding of Semantic Web technologies.

If we want front-end developers to build applications that read and write Linked Data,
we need to speak their language and equip themwith abstractions that fit theirworkflow and
tooling [22]. Crucially, we do not see this as a matter of “dumbing down” sparql or rdf;
rather, we believe it revolves around appropriate primitives for the abstraction level at
which front-end applications are developed, similar to how sql and tables are not front-end
primitives either. The keyword is proportionality rather than convenience: the effort to
access a certain piece of data should be justifiable in terms of its utility to the application.

Pre-print. To appear in Proceedings of the 19th International Semantic Web Conference

2 Ruben Verborgh and Ruben Taelman

The difficulty lies in finding an abstraction that hides irrelevant rdf complexities,
while still exposing the unbounded flexibility that Linked Data has to offer. Abstractions
with rigid objects do not suffice, as their encapsulation tends to conceal precisely those
advantages of rdf. Tools should instead enable developers to leverage the power and
harness the challenges of the open Web. This empowerment is especially important in
decentralized environments such as the Solid ecosystem [26], where data is spread across
many sources that freely choose their data models. Building for such amultitude of sources
is significantly more complex than interfacing with a single, controlled back-end [22].

This article discusses the design, implementation, and embedding ofLDflex, a domain-
specific language that exposes theWeb of Linked Data through JavaScript expressions that
appear familiar to developers.We discuss its requirements and formal semantics, and show
how it integrates with existing front-end development frameworks. Rather than striving
for full coverage of all query needs, LDflex focuses on simple but common cases that are
not well covered by existing Semantic Web technologies (which remain appropriate for
complex scenarios). We examine the usage of LDflex within two companies, and study
its usage patterns within production code in order to assess its application in practice.

2 Related Work

Querying data on the Web sparql queries [9] carry universal semantics: each query
maintains a well-defined meaning across data sources by using uris rather than local
identifiers, making queries independent of their processing. In theory, this enables reuse
across different data sources; in practice, ontological differences need bridging [25, 29].
Although very few Web developers have experience with rdf or sparql, query-based
development has been gaining popularity because of the GraphQL language [11]. While
integrating well with existing development practices, GraphQL queries lack universal
semantics, so applications remain restricted to specific sources. Several Semantic Web
initiatives focused on providing simpler experiences. For example, EasierRDF [6] is
a broad investigation into targeting the “average developer”, whereas the concrete problem
of simplifying query writing and result handling is tackled by sparql Transformer [13].
However, we argue that the actual need is not primarily simplification of complex cases,
since many front-end developers have a sufficient background to learn rdf and sparql.
The problem is rather a mismatch of abstraction level, because even conceptually simple
data access patterns currently require a technology stack that is considered foreign.
Programming abstractions for rdf Programming experiences over rdf data generally
fall in one of two categories: either a library offers generic interfaces that represent the rdf
model (such as Triple and Literal), or a framework provides an abstraction inside of
the application domain (such as Person or BlogPost). The latter can be realized through
object-oriented wrappers, for instance via Object–Triple Mapping (otm) [12], analogous
to Object-Relational Mapping (orm) for relational databases. However, whereas a table
in a traditional database represents a closed object with a rigid structure, representations
of rdf resources on the Web are open and can take arbitrary shapes. As such, there exists
an impedance mismatch between the object-oriented and resource-oriented worlds [5].
Furthermore, local objects do not provide a good abstraction for distributed resources [30],
which developers necessarily encounter when dealing with Linked Data on the Web.

Pre-print. To appear in Proceedings of the 19th International Semantic Web Conference

LDflex: a Read/Write Linked Data Abstraction for Front-End Web Developers 3

Domain-specific languages for querying A Domain-Specific Language (dsl) is a pro-
gramming language that, in contrast to general-purpose languages, focuses on a specific
purpose or application domain, thereby trading generality for expressiveness [15]. A dsl
is external if it has a custom syntax, whereas an internal dsl is embedded within the
syntax of a host language [8]. For example, the scripting language Ripple is an external
dsl for Linked Data queries [19]. Inside of another language, external dsls are typically
treated as text strings; for instance, a sparql query inside of the Java language would
typically not be validated at compile time. Internal dsls instead blend with the host
language and reuse its infrastructure [8]. A prominent example of an internal query dsl
is ActiveRecord within the Ruby language, which exposes application-level methods
(such as User.find_by_email) through the Proxy pattern [16]. The Gremlin dsl [18]
instead uses generic graph concepts for traversal in different database implementations.
JavaScript and its frameworks Since JavaScript can be used for both front-end and
back-end Web application development, it caters to a large diversity of developers in
terms of skills and tool stacks. A number of different frameworks exist for front-end
development. The classic jQuery library [4] enables browser-agnostic JavaScript code
for reading and modifying html’s Document Object Model (dom) via developer-friendly
abstractions. Recently, frameworks such as React [17] have been gaining popularity
for building browser-based applications. JavaScript is single-threaded; hence, costly
i/o operations such as http requests would block program execution if they were executed
on the main thread. JavaScript realizes parallelism through asynchronous operations,
in which the main thread delegates a task to a separate process and immediately resumes
execution. When the process has finished the task, it notifies the JavaScript thread though
a callback function. To simplify asynchronous code, the Promise class was recently
introduced into the language, with the keywords async–await as syntactical sugar [14].
JavaScript and rdf Because of its ubiquitous embedding in browsers and several servers,
the JavaScript programming language lends itself to reusing the same rdf code in server-
side and browser-based Web apps. For compatibility, the majority of rdf libraries for
JavaScript conform to api specifications [2] created by the w3c Community Group rdf/js.
The modular Comunica query engine [23] is one of them, providing sparql query
processing over a federation of heterogeneous sources. JavaScript also gave birth to the
JavaScript Object Notation (json), a widely used data format even in non-JavaScript
environments. The json-ld format [20] allows adding universal semantics to json docu-
ments by mapping them to rdf. json-ld allows json terms to be interpreted as uris using
a given json-ld context that describes term-to-uri mappings. Since json-ld contexts
can exist independently of json-ld documents, they can be reused for other purposes.
For example, GraphQL-LD [24] leverages them to add universal semantics to GraphQL.
The object-oriented abstractions SimpleRDF1 and RDF Object2 provide access to
rdf data by applying json-ld contexts to regular objects. Instead of per-property access,
Soukai Solid3 considers entire rdf data shapes. All of the aforementioned abstractions
require preconfiguring the context or shape and preloading an rdf graph in memory
before data can be accessed in an object-oriented manner, limiting them to finite graphs.

1 https://github.com/simplerdf/ simplerdf
2 https://github.com/rubensworks/rdf-object.js
3 https://github.com/NoelDeMartin/soukai-solid

Pre-print. To appear in Proceedings of the 19th International Semantic Web Conference

https://github.com/simplerdf/simplerdf
https://github.com/rubensworks/rdf-object.js
https://github.com/NoelDeMartin/soukai-solid

4 Ruben Verborgh and Ruben Taelman

3 Requirements Analysis

This section lists the main requirements of LDflex for achieving the goal of a read/write
Linked Data abstraction for front-end developers.
R1: Separates data and presentation Because of specialization and separation of
concerns, front-end developers who work on the presentation layer typically should
not come in contact with the data storage layer or its underlying database. Instead, they
usually retrieve data through a data access layer, which is a higher-level abstraction
over the storage layer that hides complexities of data storage that are irrelevant to
front-end developers. For example, front-end developers could use a framework that
exposes the active record architectural pattern instead of manually writing sql queries
for accessing relational databases. While sparql queries can abstract data access over
a large variety of rdf interfaces, repeated sparql patterns in the presentation layer can
become cumbersome to write. Specifically, we need a solution to capture repeated access
to simple data patterns that occur frequently in typical front-end applications.
R2: Integrates into existing tooling The high tempo at which front-endWeb development
happens is only possible through specificworkflows and tools used by front-end developers.
Any solution needs to fit into these workflows, and provide compatibility with these tools.
For instance, popular front-end frameworks such as React are based on composable,
stateful components. In order for an abstraction layer to be useful, it must be able to
integrate directly with such frameworks, without requiring further manual work.
R3: Incorporates the open world Since relational databases contain a finite number of
data elements with a fixed schema, data access layers for relational databases can be
static and based on a fixed set of properties and methods. In contrast, there is always
more rdf data to be found for a given resource, and rdf data shapes can exist in various
ontologies. Therefore, a data access layer for rdf must be dynamic so that it can handle
arbitrarily shaped rdf data and various ontologies at runtime.
R4: Supports multiple remote sources In addition to interacting with local rdf data, it is
crucial that an abstraction can also seamlessly access Linked Data from remote sources,
preserving the semantics of data. Furthermore, rdf data for one resource can be spread
over multiple sources across the Web, especially in decentralized scenarios, so a solution
must consider this distribution and its consequences for application development.
R5: Uses Web standards It is required to interoperate with different modes of data
access and data interfaces. This means that solutions have to be compatible with existing
Web standards, such as rdf, sparql, and http protocols and conventions regarding
caching and authentication. Furthermore, since the solution will need to be deployed
inside of browsers, it needs to be written in (or be able to be compiled to) languages and
environments that are supported bymodern browsers, such as JavaScript orWebAssembly,
and corresponding browser apis.
R6: Is configurable and extensible Since different applications have different data and
behavioral demands, it must be possible to configure and extend the interpretation of the
abstraction. On the one hand, developers must be able to configure the mapping from
the data access layer to the rdf storage layer. On the other hand, developers must be
able to customize existing features and to add new functionality, while controlling the
correspondence with the storage layer.

Pre-print. To appear in Proceedings of the 19th International Semantic Web Conference

LDflex: a Read/Write Linked Data Abstraction for Front-End Web Developers 5

4 Syntax and Semantics

Based on the above requirements, we have designed the LDflex dsl for JavaScript. We
discuss relatedWeb languages, and explain its syntactical design and formal interpretation.

4.1 Relation to Existing Languages

The LDflex language draws inspiration from existing path-based languages for the Web.
The jQuery library [4] introduced a dsl for the traversal of html’s Document Object
Model, following the Fluent Interface pattern [7] with method chaining. For example,
the expression $('ol').children().find('a').text() obtains the anchor text of the
first hyperlink in an ordered list. This dsl is internal, as it is embedded within its host
language JavaScript. Like Gremlin, it is implemented on the meta-level, with built-in
methods such as children and attr referring to abstract html constructs (child nodes
and attributes) rather than concrete cases (such as). We call the evaluation of
jQuery paths safe because supported methods are always defined—even if intermediary
results are missing. For example, for elements without child nodes, calling element

.children().children()will not produce a runtime error but rather yield an empty set.
The json-ld format is a subset of json, which itself is a subset of JavaScript. When

a json-ld document is parsed into main memory during the execution of a JavaScript
program, the resulting object can be traversed by chaining property accessors into
a path. For instance, given a parsed json-ld document stored in a person variable, the
expression person.supervisor.department.label could—depending on the object’s
json-ld context [20] and frame [21]—indicate the department label of a person’s
supervisor. Like jQuery paths, json-ld paths are valid JavaScript expressions and thus
form an embedded dsl. In contrast to jQuery, json-ld paths use data-level constructs
that refer to a concrete case (such as supervisor or department), rather than common
metamodel concepts shared by all cases (such as subject or predicate). Evaluation
is unsafe: syntactically valid paths might lead to runtime errors if an intermediate field
is missing. For example, missing or incomplete data could lead the json-ld path segments
supervisor or department to be undefined and therefore cause the evaluation to error.

4.2 Syntactical Design

Generic syntactical structure To achieve the requirements derived in Section 3, we com-
bine the data-level approach of json-ld with the safe evaluation from jQuery, leveraging
the Fluent Interface pattern [7]. LDflex adopts the syntax of json-ld paths consisting of
consecutive property accesses, whose set of names is defined by a json-ld context [20]
that also lists the prefixes. It follows the jQuery behavior that ensures each syntactically
valid path within a given context results in an errorless evaluation. It provides extension
points in the form of custom properties and methods to which arguments can be passed.

The grammar in Listing 1 expresses the syntax of an LDflex path in Backus–
Naur form with start symbol 〈path〉. The terminal root is a JavaScript object provided
by an LDflex implementation. short-name corresponds to json-ld term, prefix to
json-ld prefix, local-name to json-ld suffix [20], and arguments is any valid JavaScript
method arguments expression. Listing 2 displays examples of valid grammar productions.

Pre-print. To appear in Proceedings of the 19th International Semantic Web Conference

6 Ruben Verborgh and Ruben Taelman

〈path〉 |= root 〈segments〉
〈segments〉 |= ε | 〈segment〉 | 〈segment〉 〈segments〉
〈segment〉 |= 〈property-access〉 | 〈method-call〉

〈property-access〉 |= [" full-uri "] | [" 〈shorthand〉 "] | . 〈shorthand〉
〈shorthand〉 |= prefix _ local-name | short-name
〈method-call〉 |= short-name (arguments)

Listing 1. LDflex expressions follow a path-based syntax, detailed here in its Backus–Naur form.

1 const blog = data["https://alice.example/blog/"];

2 const comments = blog.blogPost.comment;

3 const blogAuthor = blog.foaf_maker.givenName;

4 displayItems(blog, comments, blogAuthor);

5
6 async function displayItems(topic, items, creator) {

7 console.log(`Items of ${await topic.name} at URL ${await topic}`);

8 console.log(`created by ${await creator}:`);

9 for await (const item of items)

10 console.log(`- ${item}: ${await item.name}`);

11 }

Listing 2. In this code, LDflex paths are used to collect all comments on posts from a given blog.
(This interpretation assumes that the Schema.org json-ld context and foaf prefix are set.)

In practice, several variations on this core grammar exist, leveraging the syntactical
possibilities of JavaScript. For instance, an LDflex can be assigned to a variable, after
which further segments can be added to that variable. In the remainder of this section,
we focus on the core fragment of LDflex consisting of path expressions.

Usage as paths Multiple LDflex path syntax variations are displayed in lines 1 to 3 of
Listing 2. Line 1 assumes the availability of a root object called data, on which we access
a property whose name is a full url. Since LDflex has safe evaluation, it guarantees
that blog is not undefined for any arbitrary url (the mechanism for which is explained
in Section 5). Line 2 contains a continuation of the path from the previous line, using
the blogPost and comment shorthands from the Schema.org json-ld context (assumed
preset), which represent http:// schema.org/blogPost and http:// schema.org/comment,
respectively. The prefix syntax is shown on Line 3, where foaf_maker represents
http://xmlns.com/ foaf/0.1/maker (assuming the foaf prefix has been preset). LDflex is
json-ld-compatible, and thus also supports compact iris [20] in the familiar foaf:maker
syntax. However, since property names containing colons need to be surrounded with
brackets and quotes in JavaScript (["foaf:maker"]), we offer an alternative syntax that
replaces the colon with either an underscore or dollar sign to bypass such escaping needs.
Finally, those three paths are passed as arguments to a function call on line 4. Note in
particular how these lines are syntactically indistinguishable from regular JavaScript code,
even though they interact with Linked Data on the Web instead of local objects.

Pre-print. To appear in Proceedings of the 19th International Semantic Web Conference

http://schema.org/blogPost
http://schema.org/comment
http://xmlns.com/foaf/0.1/maker

LDflex: a Read/Write Linked Data Abstraction for Front-End Web Developers 7

Resolution to a value On lines 1 to 4, LDflex expressions are treated purely as paths,
which are created, extended, and passed around. An unresolved LDflex path points to
values rather than representing those values itself. Obtaining the actual values involves
one or more network requests, but since JavaScript is single-threaded, we cannot afford
the mere creation of paths to consume such time. Instead, LDflex leverages a syntactical
feature of JavaScript to explicitly trigger asynchronous resolution when needed: by
placing the await keyword in front of an LDflex path, it resolves to the first value pointed
to by the expression. Lines 7, 8 and 10 show this mechanism in action, where for instance
creator (corresponding to blog.foaf_maker.givenName) is resolved to its value. Note
how topic resolves to a url because it points to a named node within the rdf model.
We can retrieve a human-readable label for it by resolving the list.name path (line 7),
which will resolve to its http:// schema.org/name property. Importantly, in addition to
representing values, resolved LDflex paths obtained using await still behave as regular
LDflex paths to which additional segments can be added. This is exemplified on line 10,
where the resolved path item is extended to item.name and in turn resolved via await.
Resolution to a series In several cases, resolving to a single value is preferred. For
instance, even if multiple given names are specified for a person, displaying just one
might be sufficient in a given context. In other contexts, all of its values might be needed.
LDflex offers developers the choice between resolving to a singular value using await,
or iterating over multiple values using the for...await syntactical construct. On line 9,
the items path (corresponding to blog.blogPost.comment) is resolved asynchronously
into a series of values. Every resulting item is a resolved LDflex path, that can be used
as a raw value (item on line 10), or a regular LDflex path that is subsequently resolved
(await item.name on line 10). In this example, the iteration variable item points to the
url of a comment, whereas item.name resolves to a human-readable label.

4.3 Formal Semantics

Similar to a json-ld document, the specific meaning of an LDflex expression is
determined by the context in which it occurs. The resulting interpretation carries
universal semantics. For LDflex expressions, the interpretation depends on the active
LDflex configuration set by a domain expert, which includes settings such as:

– the definition and interpretation of the root path;
– the json-ld context used for resolving names into uris;
– the definition of method calls and special properties.

In general, an LDflex expression consists of consecutive property accesses, rep-
resenting a path from a known subject to an unknown object. For example, the
path data["https://alice.example/blog/"].blogPost.comment.name formed by
lines 1, 2 and 10 of Listing 2 corresponds to the sparql query displayed in Listing 3.
This interpretation assumes a configuration that sets Schema.org as the json-ld context,
and which interprets properties on the root node data as the url of a subject resource.
The configuration also expresses how data sources are selected. For instance, it might
consider the document https://alice.example/blog/ as an rdf graph or as a seed
for link traversal [10], or might look up a query interface at https://alice.example/.

Pre-print. To appear in Proceedings of the 19th International Semantic Web Conference

http://schema.org/name

8 Ruben Verborgh and Ruben Taelman

1 SELECT ?name WHERE {

2 <https://alice.example/blog/> <http://schema.org/blogPost> ?post.

3 ?post <http://schema.org/comment> ?comment.

4 ?comment <http://schema.org/name> ?name.

5 }

Listing 3. The expression data["https://alice.example/blog/"].blogPost.comment.name

of Listing 2 is interpreted as a sparql query expressing “titles of comments on posts of a given blog”.

The query processing itself is handled entirely by an existing sparql query engine, and
partial results can be cached and reused across LDflex paths for performance reasons.

We will now introduce a formal semantics for the set of LDflex expressions LDf.
It is determined by an interpretation function IC : LDf → Q × S, where Q is the set
of sparql queries and S the set of source expressions over which sparql queries
can be processed. Such an interpretation function can be instantiated by an LDflex
configuration C = 〈ctx, root,other〉, where ctx : $→U represents a json-ld context that
maps JavaScript strings to rdf predicate uris, and root : $→U× S a function that maps
strings to a start subject uri and a source expression. The other set is reserved for other
interpretation aspects, such as built-in properties or method names (not covered here).

We consider an LDflex expression e ∈ LDf as a list consisting of a root property r ∈ $
and n > 0 property accessors ki ∈ $, such that e = (r,k1, . . . ,kn) ∈ $n. The result of
its interpretation IC(e) = 〈q, s〉 is defined as follows. The root property r is resolved
to a uri ur ∈ U using root(r) = 〈ur, sr〉. Every property string ki is resolved to a uri ui
using ctx, such that ∀i ∈ [1,n] : ui = ctx(ki). Then, we generate a set of n triple patterns
TPe ⊂ (U∪V)×U×(U∪V), with tpi = 〈si,pi,oi〉 ∈ TPe conforming to the constraints:

– the subject of the first pattern is the root property’s uri: s1 = ur
– the predicates correspond to the mapped json-ld properties: ∀i ∈ [1,n] : pi = ui
– the objects are unique variables: ∀i, j ∈ [1,n]2 : oi ∈ V ∧ i , j ⇒ oi , oj
– the objects and subjects form a chain of variables: ∀i ∈ [2,n] : si = oi−1

These triple patterns form the sparql query q returned by IC, which is a SELECT query that
projects bindings of the basic graph pattern TPe to the variable on. The second element sr
from the result of root determines the returned data source s = sr for query evaluation.
The example in Listing 3 is obtained from its LDflex expression with v 7→ 〈v, v〉 as root.

Importantly, this semantics ensures that the creation of any sequence of path segments
always succeeds—even if no actual rdf triples exist for some intermediate predicate
(which would cause an error with json-ld). This is because the LDflex expression
represents a query, not a value. When the expression is prefixed with the await keyword,
it resolves to an arbitrary rdf term ti resulting from the evaluation of its underlying
sparql query over the specified data sources: 〈ti〉 ∈ [[q]]s (or undefined if there is none).
With the for...await construct, all rdf terms 〈〈t1〉, . . . , 〈tm〉〉 = [[q]]s are returned one
by one in an iterative way.

Some LDflex configurations can have additional functionality, which is not covered in
the general semantics above. For instance, a json-ld context can have reverse properties,
for which the subject and objects of the corresponding triple pattern switch places.

Pre-print. To appear in Proceedings of the 19th International Semantic Web Conference

LDflex: a Read/Write Linked Data Abstraction for Front-End Web Developers 9

4.4 Writing and Appending Data

The formal semantics above cover the case where an LDflex path is used for reading data.
However, the same query generationmechanism can be invoked to execute sparql UPDATE
queries. Since updates require filling out data in a query, they are modeled asmethods such
that arguments can be passed. The following methods are chainable on each LDflex path:

– .add(...) appends the specified objects to the triples matching the path.
– .set(...) removes any existing objects, and appends the specified objects.
– .replace(old, ...new) replaces an existing object with one or more new objects.
– .delete(...) removes the specified objects, or all objects (if none specified).

5 Implementation and Embedding

In this section, we discuss the implementation of LDflex within JavaScript to achieve
the intended syntax and semantics as described in previous section. We first explain the
main architecture, followed by an overview of the developed LDflex libraries.

5.1 Loosely-Coupled Architecture

Proxy Since the LDflex grammar allows for an infinite number of root paths and
property uris, we cannot implement them as a finite set of regular object methods.
Instead, we make use of the more flexible Proxy pattern [16]. In JavaScript, Proxy allows
customizing the behavior of the language by intercepting basic built-in constructs such as
property lookup and function invocation. Intercepting every property access at one point
is sufficient to define the behavior of the infinite number of possible properties.
Handlers and resolvers To achieve flexibility in terms of the functionality and logic
that happens during LDflex expression evaluation, we make use of a loosely-coupled
architecture of standalone handlers and resolvers. During the creation of the proxy-
based LDflex path expression object, different handlers and resolvers can be configured,
which allow the functionality of fields and methods on this path expression to be defined.
Handlers are attached to a specific field or method name, which are used for implementing
specifically-named functionality such as .subject, .add(), and .sort(). Resolvers
are more generic, and are invoked on every field or method invocation if no handler
was applicable, after which they can optionally override the functionality. For example,
a specific resolver will translate field names into uris using a configured json-ld context.
Implementing multiple interfaces Using the handlers and resolvers, the LDflex path
expression behaves as an object with chainable properties. To allow path expressions to
resolve to a single value using the await keyword, LDflex paths implement the JavaScript
Promise interface through a handler. To additionally allow resolution to multiple values,
LDflex paths also implement implement the AsyncIterable contract through another
handler. Thanks to the Proxy functionality, an expression can thus simultaneously
behave as an LDflex path, a Promise, and an AsyncIterable. The returned values
implement the rdf/js Term interface and thus behave as uris, literals, or blank nodes.
Furthermore, again by using Proxy, every value also behaves as a full LDflex path such

Pre-print. To appear in Proceedings of the 19th International Semantic Web Conference

10 Ruben Verborgh and Ruben Taelman

that continuations are possible. This complex behavior is exemplified in Listing 2, where
the LDflex path items on line 9 is treated as an iterable with for...await, resulting in
multiple item values. On line 10, those are first treated an rdf/js Term (item), then as
an LDflex path (item.name), and finally as a Promise (with await item.name).
Query execution To obtain result values, path expressions are first converted into sparql
queries, after which they are executed by a sparql engine. By default, sparql queries
for data retrieval are generated, as described in Section 4.3. When update handlers are
used, sparql UPDATE queries are generated. This sparql query engine can be configured
within the constructor of the path expression, which allows a loose coupling with sparql
engines. Since LDflex passes sparql queries to existing query engines, it is not tied
to any specific processing strategy. For instance, the engine could execute queries over
sparql endpoints, in-memory rdf graphs, federations of multiple sources, or different
query paradigms such as link-traversal-based query processing [10]. The performance of
LDflex in terms of time and bandwidth is thus entirely determined by the query engine.

5.2 LDflex Libraries
Core libraries The JavaScript implementation ofLDflex is available under themit license
on GitHub at https://github.com/LDflex/LDflex, via the doi 10.5281/zenodo.3820072,
and the persistent url https://doi.org/10.5281/zenodo.3820071, and has an associated
canonical citation [28]. The LDflex core is independent of a specific query engine, so
we offer plugins to reuse the existing query engines Comunica (https://github.com/
LDflex/LDflex-Comunica) and rdflib.js (https://github.com/LDflex/LDflex-rdflib) which
enable full client-side query processing. Following best practices, LDflex and all of
its related modules are available as packages compatible with Node and browsers
on npm and are described following the fair principles as machine-readable Linked Data
in rdf at https:// linkedsoftwaredependencies.org/bundles/npm/ldflex. To make usage
easy for newcomers, various documentation pages, examples, and tutorials created by
ourselves and others are linked from the GitHub page. A live testing environment is
at https:// solid.github.io/ ldflex-playground/ . The sustainability plan includes a minimum
of 3 years of maintenance by our team, funded by running projects related toWeb querying.
Solid libraries An important application domain for LDflex is the Solid decentralized
ecosystem [26]. In Solid, rather than storing their data collectively in a small number of
centralized hubs, every person has their own personal data vault. Concretely, personal
data such as profile details, pictures, and comments are stored separately for every person.
Solid uses Linked Data in rdf, such that people can refer to each other’s data, and to
enable universal semantics across all data vaults without resorting to rigid data structures.

We createdLDflex for Solid (available at https://github.com/solid/query-ldflex/) as an
LDflex configuration that reuses a Solid-specific json-ld context containing shorthands
for many predicates relevant to Solid. It is configured with custom handlers such as like
and dislike actions. As certain data within Solid data pods requires authentication, this
configuration includes a Comunica-based query engine that can perform authenticated
http requests against Solid data pods. It allows users to authenticate themselves to the
query engine, after which the query engine will use their authentication token for any
subsequent queries. Because of authentication, LDflex can be context-sensitive: within
an expression such as user.firstName, user refers to the currently logged-in user.

Pre-print. To appear in Proceedings of the 19th International Semantic Web Conference

https://github.com/LDflex/LDflex
https://doi.org/10.5281/zenodo.3820071
https://github.com/LDflex/LDflex-Comunica
https://github.com/LDflex/LDflex-Comunica
https://github.com/LDflex/LDflex-rdflib
https://linkedsoftwaredependencies.org/bundles/npm/ldflex
https://solid.github.io/ldflex-playground/
https://github.com/solid/query-ldflex/

LDflex: a Read/Write Linked Data Abstraction for Front-End Web Developers 11

The LDflex for Solid library is the basis for the Solid React Components (available at
https://github.com/solid/react-components/), which are reusable software components
for building React front-ends on top of Linked Data sources. These components can be
used in React’s dsl based on JavaScript and html to easily retrieve single and multiple
values, as can be seen in Listing 4. Since these LDflex micro-expressions are regular
strings, there is no specific coupling to the React framework. As such, LDflex can be
reused analogously in other front-end frameworks.

1 <h2>Ruben's name</h2>

2 <Value src='["https://ruben.verborgh.org/profile/#me"].firstName'/>

3 <h2>Ruben's friends</h2>

4 <List src='["https://ruben.verborgh.org/profile/#me"].friends.firstName'/>

Listing 4. This example shows how React components, in this case Value and List, can use
LDflex micro-expressions (highlighted) to retrieve Linked Data from the Web.

6 Usage and Validation

This section summarizes interviews we conducted4 on the usage of LDflex within two
companies. We evaluate the usage of LDflex within Janeiro Digital and Startin’blox by
validating the requirements set out in Section 3.

6.1 Janeiro Digital

Janeiro Digital5 is a business consultancy company in Boston, ma, usa that counts
around 100 employees. They have worked in close collaboration with Inrupt6, which
was founded as a commercial driver behind the Solid initiative. They have developed
the Solid React Software Development Kit (sdk), a toolkit for developing high-quality
Solid apps without requiring significant knowledge on decentralization or Linked Data.

The employees within Janeiro Digital have a mixed technology background; several
of them are dedicated front-end developers. Janeiro Digital makes use of LDflex as the
primary data retrieval and manipulation library within the Solid React sdk. LDflex was
chosen as it was a less verbose alternative to existing rdf libraries such as rdflib.js. Since
most developers had never used rdf or sparql before, rdflib.js was very difficult to
work with due to the direct contact with rdf triples. Furthermore, front-end developers
would have to write sparql queries, while they were used to abstraction layers for such
purposes. Since LDflex offers an abstraction layer over rdf triples and sparql queries,
and makes data look like JavaScript objects, it proved to be easier to learn and work with.

The Solid React sdk provides several React components and code generators, which
heavilymake use of LDflex tomeet simple data retrieval andmanipulation needs. Because
of LDflex, Janeiro Digital has been able to eliminate their previous dependency on the
rdf library rdflib.js for building interactive applications over distributed Linked Data.
Below, we briefly discuss three representative usages of LDflex within the sdk.

4 The unabridged interview text is at https:// ruben.verborgh.org/ iswc2020/ ldflex/ interviews/ .
5 https://www.janeirodigital.com/
6 https:// inrupt.com/

Pre-print. To appear in Proceedings of the 19th International Semantic Web Conference

https://github.com/solid/react-components/
https://ruben.verborgh.org/iswc2020/ldflex/interviews/
https://www.janeirodigital.com/
https://inrupt.com/

12 Ruben Verborgh and Ruben Taelman

1 const folder = data['http://example.org/myfolder'];

2 const paths = [];

3 for await (const path of folder['ldp:contains']) {

4 paths.push(path.value);

5 }

Listing 5. Solid React sdk logic for collecting resources within a container.

1 await user.vcard_hasPhoto.set(namedNode(uri));

Listing 6. Solid React sdk logic for adding or changing a profile image.

Collecting Files in a Folder Listing 5 shows how LDflex for...await loops are being
used to iterate over all resources within a container in a Linked Data Platform interface.
Saving Profile Photos Listing 6 shows the code that allows users to change their profile
picture using the .set() method.
Manipulating Access Control for Files Listing 7 shows how Solid’s Web Access Control
authorizations for resource access can be manipulated using LDflex. In this case, a new
acl:Authorization is created for a certain document.

The LDflex usage within the Solid React sdk shows a successful implementation of
our requirements. Since Janeiro Digital deliberately chose LDflex due to its abstraction
layer over rdf and sparql, it separates data and presentation (R1). As LDflex can be
used within React applications, even in combination with other rdf libraries such as
rdflib.js, it achieves the requirement that it integrates into existing tooling (R2). Next,
LDflex incorporates the open world (R3) because it allows the sdk to make use of any
ontology they need. Since LDflex uses Web standards (R5), the sdk can run in client-side
Web applications. Furthermore, the sdk can directly interact with any Solid data pod, and
even combine multiple of them, which verifies the requirement that it supports multiple
remote sources (R4). The Solid configuration of LDflex discussed in Section 5 is used
within the sdk, which shows that LDflex is configurable and extensible (R6).

1 const { acl, foaf } = ACL_PREFIXES;

2 const subject = `${this.aclUri}#${modes.join('')}`;

3 await data[subject].type.add(namedNode(`${acl}Authorization`));

4 const path = namedNode(this.documentUri);

5 await data[subject]['acl:accessTo'].add(path);

6 await data[subject]['acl:default'].add(path);

Listing 7. Solid React sdk logic for authorizing access to a certain document.

6.2 Startin’ Blox

Startin’blox7 (SiB) is a company in Paris, France with a team of 25 freelancers. They
develop the developer-friendly SiB framework with Web components that can fetch

7 https:// startinblox.com/

Pre-print. To appear in Proceedings of the 19th International Semantic Web Conference

https://startinblox.com/

LDflex: a Read/Write Linked Data Abstraction for Front-End Web Developers 13

1 <sib-display

2 data-src="data/list/users.jsonld"

3 fields="username, first_name, last_name, email, profile.city"

4 ></sib-display>

Listing 8. An SiB component for displaying the given fields of a list of users.

1 data["data/list/users.jsonld"].username

2 data["data/list/users.jsonld"].first_name

3 data["data/list/users.jsonld"].last_name

4 data["data/list/users.jsonld"].email

5 data["data/list/users.jsonld"].profile.city

Listing 9. All LDflex expressions that are produced in the SiB component from Listing 8.

data from Solid data vaults. Usage of SiB happens within the Happy Dev network8
(a decentralized cooperative for self-employed developers), the European Trade Union
Confederation, the International Cooperative Alliance, Smart Coop, and Signons.fr.

The Startin’blox team has a background in Web development, and assembled to
support the creation of Solid applications. LDflex was chosen as an internal library for
accessing Solid data pods, as opposed to directly writing sparql queries for data access,
since they consider sparql too complex to learn for new developers, and they do not
have a need for the full expressiveness that sparql has to offer. Most developers had no
direct experience with rdf directly, but they knew json, which lowered the entry-barrier.

The SiB framework offers Web components in which developers can define source
uris and the fields that need to be retrieved from them, as shown in Listing 8. An LDflex
expression will then be produced for each field, as shown in Listing 9. This example is
representative for LDflex usage within SiB, where the majority of expressions select just
a single property, and some expressions containing a chain of two properties. The LDflex
engine can optimize internally such that, for instance, the document is only fetched once.

The usage of LDflex within SiB shows that LDflex meets all of our introduced
requirements. As SiB component users only need to define a data source and a set of
fields, the data storage layer is fully abstracted for them, which means it separates data
and presentation (R1). Furthermore, the integration of LDflex within the SiB components
exemplifies how it integrates into existing tooling (R2). Next, any kind of field can be
defined within SiB components without this field having to preconfigured, which shows
that LDflex incorporates the open world (R3). SiB is a client-side framework, and it
works over Linked Data-based Solid data pods over http, which shows how LDflex uses
Web standards (R5). Some SiB users—such as the Happy Dev network—access data
that is spread over multiple remote documents, and LDflex supports multiple remote
sources (R4). Finally, SiB is able to configure its own json-ld context. Some of their
specific needs, such as the ability to handle pagination, and support for language-based
data retrieval, can be implemented and configured as custom hooks into LDflex, which
validates that LDflex is configurable and extensible (R6) for their purposes.

8 https://happy-dev.fr/

Pre-print. To appear in Proceedings of the 19th International Semantic Web Conference

https://happy-dev.fr/

14 Ruben Verborgh and Ruben Taelman

7 Conclusion

Most Web developers do not care about Semantic Web technologies—and understandably
so: the typical problems they tackle are of a less complex nature than what rdf and
sparql were designed for. When a front-end is built to match a single, well-known
back-end, nothing beats the simplicity of json and perhaps GraphQL, despite their lack of
universal semantics. This, however, changes when accessingmultiple back-ends—perhaps
simultaneously—without imposing central agreement on all data models. Reusing the rdf
technology stack might make more sense than reinventing the wheel, which unfortunately
has already started happening within, for instance, the GraphQL community [1].

The Semantic Web definitely has a user experience problem, and if the rest of the
Web can serve as a reliable predictor, neither researchers nor engineers will be the ones
solving it. Front-end Web developers possess a unique skill set for translating raw data
quickly into attractive applications. They can build engaging end-user interfaces to the
Semantic Web, if we can provide them with the right developer experience by packaging
rdf technology into a relevant abstraction layer. This requires an understanding of what
the actual gaps are, and those look different than what is often assumed. During the
design of LDflex, we have interacted with several front-end developers. All of them had
a sufficiently technical profile to master rdf and sparql—and some of them even did.
So there is no inherent need to simplify rdf or sparql. The point is rather that, in several
common cases, those technologies are simply not the right tools for the job at hand.

LDflex is designed to support the adoption of Semantic Web technologies by front-
end developers, who can in turn improve the experience and hence adoption for end-users.
Rather than aiming to simplify everything, we want to ensure that straightforward tasks
require proportionally sized code. For example, greeting the user by their first name
is perfectly possible by fetching an rdf document, executing a sparql query, and
interpreting the results. That code could even be abstracted into a function. However,
the fact this code needs to be written in the first place, makes building user-friendly
applications more involved. LDflex reduces such tasks to a single expression, removing
a burden for building more engaging apps. The LDflex abstraction layer essentially acts
as a runtime-generated data layer, such that a lot of glue code can be omitted. In fact,
we witnessed at Janeiro Digital how several helper functions were eliminated by LDflex.

Importantly, LDflex purposely does not strive to provide an all-encompassing tool.
The path queries that LDflex focuses on do not cover—by far—the entire spectrum of
relevant application queries. While the evaluation shows that path queries are applicable
to many common scenarios, more expressive languages such as GraphQL-LD or sparql
remain appropriate for the remaining cases. LDflex rather aims to fulfill the Rule of
Least Power [3], so developers can choose the expressivity that fits their problem space.
Because of its high degree of extensibility, it can be adapted to different use cases via
new, existing, or partly reused configurations.

Thereby, in addition to verifying whether our design requirements were met, the
evaluation also brings insights into the technological needs of applications. Crucially,
many sparql benchmarks focus on complex queries with challenging basic graph patterns,
whereas some front-end patterns might actually generate rather simple queries—but
a tremendously high volume of them. Furthermore, these queries are processed on the
public Web, which is sensitive to latency. Typical scientific experiments are not tuned to

Pre-print. To appear in Proceedings of the 19th International Semantic Web Conference

LDflex: a Read/Write Linked Data Abstraction for Front-End Web Developers 15

such contexts and constraints, so the currently delivered performance might lag behind.
This makes it clear that delivering simple abstractions is not necessarily a simple task.
On the contrary, exposing complex data through a simple interface involves automating the
underlying complexity currently residing in handwritten code [29]. Doing so efficiently
requires further research into handling the variety and distribution of data on the Web.

Since Solid presents prominent use cases for LDflex, future work will also need
to examine how expressions can be distributed across different sources. For example,
an expression such as user.friends.email could retrieve the list of friends from the
user’s data vault, whereas the e-mail addresses themselves could originate from the
data vault of each friend (to ensure the recency of the data). Technically, nothing stops us
from already doing this today: we could process the corresponding sparql query with
a link-traversal-based query algorithm [10], which would yield those results. However, the
actual problem is rather related to trust: when obtaining data for display to a user, which
parts should come from which sources? A possible solution is constrained traversal [27],
in which users can explain what sources they trust for what kinds of data.

One of the enlightening experiences of the past couple of months was that, during
browser application development, we found ourselves also using LDflex—despite being
well-versed in rdf and sparql. This is what opened our eyes to write this article: the
reason we sometimes preferred LDflex is because it expressed a given application need
in a straightforward way. We surely could have tackled every single need with sparql,
but were more productive if we did not. This led to perhaps the most crucial insight:
enabling developers means enabling ourselves.

Acknowledgements

The authors wish to thank Tim Berners-Lee for his suggestion to build a “jQuery for rdf.”
We thank James Martin and Justin Bingham from Janeiro Digital and Sylvain Le Bon
and Matthieu Fesselier from Startin’blox for their participation in the LDflex interviews.
This research received funding from the Flemish Government under the “Onderzoeks-
programma Artificiële Intelligentie (AI) Vlaanderen” program.

References

1. Baxley, III, J.: Apollo Federation – a revolutionary architecture for building a distributed
graph (May 2019), https://blog.apollographql.com/apollo-federation-f260cf525d21

2. Bergwinkl, T., Luggen, M., elf Pavlik, Regalia, B., Savastano, P., Verborgh, R.: rdf/js: Data
model specification. Draft community group report, w3c (Sep 2019), https:// rdf.js.org/data-
model-spec/

3. Berners-Lee, T., Mendelsohn, N.: The rule of least power. tag finding, w3c Technical
Architecture Group (Feb 2016), https://www.w3.org/2001/ tag/doc/ leastPower.html

4. Bibeault, B., Kats, Y.: jQuery in Action. Manning (2008)
5. Champin, P.A.: rdf-rest: a unifying framework forWeb apis and Linked Data. In: Proceedings

of the First Workshop on Services and Applications over Linked apis and Data (2013)
6. EasierRDF, https://github.com/w3c/EasierRDF
7. Fowler, M.: FluentInterface (2005), https://www.martinfowler.com/bliki/FluentInterface.html

Pre-print. To appear in Proceedings of the 19th International Semantic Web Conference

https://blog.apollographql.com/apollo-federation-f260cf525d21
https://rdf.js.org/data-model-spec/
https://rdf.js.org/data-model-spec/
https://www.w3.org/2001/tag/doc/leastPower.html
https://github.com/w3c/EasierRDF
https://www.martinfowler.com/bliki/FluentInterface.html

16 Ruben Verborgh and Ruben Taelman

8. Günther, S.: Development of internal domain-specific languages: Design principles and design
patterns. In: Proceedings of the 18th Conference on Pattern Languages of Programs. pp.
1:1–1:25. acm (2011)

9. Harris, S., Seaborne, A., Prud’hommeaux, E.: sparql 1.1 query language. Recommendation,
w3c (Mar 2013), https://www.w3.org/TR/2013/REC-sparql11-query-20130321/

10. Hartig, O.: An overview on execution strategies for Linked Data queries. Datenbank-Spektrum
13(2), 89–99 (2013)

11. Hartig, O., Pérez, J.: Semantics and complexity of GraphQL. In: Proceedings of the 27th
World Wide Web Conference. pp. 1155–1164 (2018)

12. Ledvinka, M., Křemen, P.: A comparison of object–triple mapping libraries. Semantic Web
Journal (2019)

13. Lisena, P., Meroño-Peñuela, A., Kuhn, T., Troncy, R.: Easy Web api development with sparql
transformer. In: Proceedings of the 18th International Semantic Web Conference (2019)

14. Loring, M.C., Marron, M., Leijen, D.: Semantics of asynchronous JavaScript. In: Proceedings
of the 13th acm sigplan International Symposium on on Dynamic Languages (2017)

15. Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific languages.
acm Computing Surveys 37(4), 316–344 (Dec 2005)

16. Peck, M.M., Bouraqadi, N., Fabresse, L., Denker, M., Teruel, C.: Ghost: A uniform and
general-purpose proxy implementation. Science of Computer Programming 98 (2015)

17. React: Facebook’s functional turn on writing JavaScript. Communications of the acm 59(12),
56–62 (Dec 2016)

18. Rodriguez, M.A.: The Gremlin graph traversal machine and language. In: Proceedings of the
15th Symposium on Database Programming Languages. pp. 1–10. acm (2015)

19. Shinavier, J.: Ripple: Functional programs as Linked Data. In: Proceedings of the Workshop
on Scripting for the Semantic Web (2007), http://ceur-ws.org/Vol-248/

20. Sporny, M., Longley, D., Kellogg, G., Lanthaler, M., Lindström, N.: json-ld 1.0. Recommen-
dation, w3c (Jan 2014), http://www.w3.org/TR/ json-ld/

21. Sporny, M., Longley, D., Kellogg, G., Lanthaler, M., Lindström, N.: json-ld 1.1 framing.
Working draft, w3c (Nov 2019), https://www.w3.org/TR/ json-ld11-framing/

22. Staab, S., Scheglmann, S., Leinberger, M., Gottron, T.: Programming the Semantic Web. In:
Proceedings of the European Semantic Web Conference. pp. 1–5 (2014)

23. Taelman, R., Van Herwegen, J., Vander Sande, M., Verborgh, R.: Comunica: a modular sparql
query engine for the Web. In: Proceedings of the 17th International Semantic Web Conference
(Oct 2018), https://comunica.github.io/Article-ISWC2018-Resource/

24. Taelman, R., Vander Sande, M., Verborgh, R.: GraphQL-LD: Linked Data querying with
GraphQL. In: Proceedings of the 17th International Semantic Web Conference: Posters and
Demos (Oct 2018), https://comunica.github.io/Article-ISWC2018-Demo-GraphQlLD/

25. Verborgh, R.: Piecing the puzzle – self-publishing queryable research data on the Web. In:
Proceedings of the 10th Workshop on Linked Data on the Web. vol. 1809 (Apr 2017)

26. Verborgh, R.: Re-decentralizing the Web, for good this time. In: Seneviratne, O., Hendler, J.
(eds.) Linking the World’s Information: Tim Berners-Lee’s Invention of the World Wide Web.
acm (2020), https:// ruben.verborgh.org/articles/redecentralizing-the-web/

27. Verborgh, R., Taelman, R.: Guided link-traversal-based query processing (2020), https:
//arxiv.org/abs/2005.02239

28. Verborgh, R., Taelman, R., Van Herwegen, J.: LDflex – A JavaScript dsl for querying Linked
Data on the Web. Zenodo (May 2020). https://doi.org/10.5281/zenodo.3820071

29. Verborgh, R., Vander Sande, M.: The Semantic Web identity crisis: in search of the trivialities
that never were. Semantic Web Journal 11(1), 19–27 (Jan 2020)

30. Waldo, J., Wyant, G., Wollrath, A., Kendall, S.: A note on distributed computing. Tech. Rep.
TR-94-29, Sun Microsystems Laboratories, Inc. (Nov 1994)

Pre-print. To appear in Proceedings of the 19th International Semantic Web Conference

https://www.w3.org/TR/2013/REC-sparql11-query-20130321/
http://ceur-ws.org/Vol-248/
http://www.w3.org/TR/json-ld/
https://www.w3.org/TR/json-ld11-framing/
https://comunica.github.io/Article-ISWC2018-Resource/
https://comunica.github.io/Article-ISWC2018-Demo-GraphQlLD/
https://ruben.verborgh.org/articles/redecentralizing-the-web/
https://arxiv.org/abs/2005.02239
https://arxiv.org/abs/2005.02239
https://doi.org/10.5281/zenodo.3820071

	LDflex: a Read/Write Linked Data Abstraction for Front-End Web Developers

